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i. More improvement in win rate in the Helpful-Harmless LM and Science LM scenarios, 
but less in the Culture-Aware LM scenario iii. Performance degrade when 

distribution shift becomes more severe

ii. Importance weight differences become clearer with IW-DPO-R! iv. Choice of density ratio estimator is not significant

III. Importance Weighted Direct Preference Optimization

iii. Definition of importance weight and training objective
Assume support of the training distribution covers that of the test distribution 

supp 𝑝te ⊆ supp 𝑝tr

𝑤⋆ 𝑥, 𝑦1, 𝑦2, 𝑏 = 𝑝te 𝑥, 𝑦1, 𝑦2, 𝑏 /𝑝tr 𝑥, 𝑦1, 𝑦2, 𝑏

𝐽(𝜋𝜃) = 𝔼𝑝tr(𝑥,𝑦1,𝑦2,𝑏) 𝑤
⋆(𝑥, 𝑦1, 𝑦2, 𝑏)ℓDPO(𝑥, 𝑦1, 𝑦2, 𝑏) = 𝐽tr(𝜋𝜃 , 𝑤

⋆)

𝒟tr = {(𝑥tr,𝑖 , 𝑦1
tr,𝑖 , 𝑦2

tr,𝑖 , 𝑏tr,𝑖)}𝑖=1
𝑁tr ∼

i.i.d.
𝑝tr(𝑥, 𝑦1, 𝑦2, 𝑏)

𝒟v = {(𝑥v,𝑖 , 𝑦1
v,𝑖 , 𝑦2

v,𝑖 , 𝑏v,𝑖)}𝑖=1
𝑁v ∼

i.i.d.
𝑝te(𝑥, 𝑦1, 𝑦2, 𝑏)

ii. Problem setting
Training and validation datasets are available, 

with the constraint that 𝑁v ≪ 𝑁tr

Goal is to optimize for the test distribution
𝐽(𝜋𝜃) = 𝔼𝑝te(𝑥,𝑦1,𝑦2,𝑏) ℓDPO(𝑥, 𝑦1, 𝑦2, 𝑏)

v. Choices of transformation function

𝑡: (𝑥, 𝑦1, 𝑦2, 𝑏) ↦ ℓDPO(𝑥, 𝑦1, 𝑦2, 𝑏)

ℓDPO(𝑥, 𝑦1, 𝑦2, 𝑏) = −log𝜎 𝑏 ⋅ (𝑟(𝑥, 𝑦1) − 𝑟(𝑥, 𝑦2))

𝑡: (𝑥, 𝑦1, 𝑦2, 𝑏) ↦ Ƹ𝑟(𝑥, 𝑦1, 𝑦2, 𝑏)

Ƹ𝑟(𝑥, 𝑦1, 𝑦2, 𝑏) = (𝑟(𝑦1), 𝑟(𝑦2))

𝑟(𝑥, 𝑦) = 𝛽log
𝜋𝜃(𝑦 ∣ 𝑥)

𝜋ref(𝑦 ∣ 𝑥)

Loss (IW-DPO-L)

Reward (IW-DPO-R)

iv. Importance weight estimation
𝑡: (𝑥, 𝑦1, 𝑦2, 𝑏) ↦ 𝑧

𝑍tr = {𝑡(𝑥tr,𝑖 , 𝑦1
tr,𝑖 , 𝑦2

tr,𝑖 , 𝑏tr,𝑖)}𝑖=1
𝑁tr

𝑍v = {𝑡(𝑥v,𝑖 , 𝑦1
v,𝑖 , 𝑦2

v,𝑖 , 𝑏v,𝑖)}𝑖=1
𝑁v

𝒘 = 𝜔(𝑍tr, 𝑍v)

Transformation function

Density ratio estimator

Transformed data

I. Summary II. Deployment Distribution Shift

𝑝tr(𝑥) ≠ 𝑝te(𝑥)
Prompt

𝑝tr(𝑦1, 𝑦2 ∣ 𝑥) ≠ 𝑝te(𝑦1, 𝑦2 ∣ 𝑥)

Response

𝑝tr(𝑏 ∣ 𝑥, 𝑦1, 𝑦2) ≠ 𝑝te(𝑏 ∣ 𝑥, 𝑦1, 𝑦2)

Preference label

𝑝(𝑥, 𝑦1, 𝑦2, 𝑏) = 𝑝(𝑥)𝑝(𝑦1, 𝑦2 ∣ 𝑥)𝑝(𝑏 ∣ 𝑥, 𝑦1, 𝑦2)

The deployment environment (deployment dist.) changes in ways not reflected in the 
training dataset (training dist.) due to changes in end-user behavior, preferences, etc.

𝑝tr(𝑥, 𝑦1, 𝑦2, 𝑏) ≠ 𝑝te(𝑥, 𝑦1, 𝑦2, 𝑏)

i. Definition

ii. Factors of distribution shift iii. Distribution shift types

i. Motivation. Training and deployment objectives often differ. For example, models 
are trained for helpfulness but deployed for harmlessness, creating a deployment 
distribution shift.

ii. Key assumption. Within the training dataset, some instances are useful (relevant), 
such as those containing helpful and harmless responses, for optimizing 
performance under the deployment distribution. In contrast, others are not useful 
(irrelevant), such as those that are helpful but harmful responses.

iii. Method. Inspired by [1], we propose an importance weighting (IW) method tailored 
for direct preference optimization (DPO) [2], IW-DPO, to mitigate this distribution 
shift by estimating importance weights through density ratio estimation between 
training and validation data, upweighting relevant instances and downweighting 
irrelevant ones to better align with the deployment distribution.

iv. Results. Experimental results under various distribution shift scenarios using 
multiple datasets demonstrate the effectiveness of our approach, with 
approximately 4% overall win rate improvement over the standard DPO.
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